To prevent accidents arising from the misuse of this controller, please ensure the operator using it receives this manual.

Warning
Turn the power supply to the instrument off before wiring or checking it. Working or touching the terminal with the power switched on may result in severe injury or death due to Electric Shock.

1. System configuration

RS-485 multi-drop connection communication (Option: C5)

(Fig. 1-1)

(Fig. 1-2)
Note: When communication converter IF-300-C5 is used, Modbus protocol is not available. For the Modbus protocol, use a commercially available communication converter.

2. Wiring connection

When using communication converter IF-300-C5 (RS-232C)

- Connector: D sub 25-pin Connection: RS-232C \longleftrightarrow RS-485 (Communication speed: 2400, 4800, 9600, 19200bps)

Shield wire

Connect only one side of the shield wire to the FG or GND terminal so that current cannot flow to the shield wire.
(If both sides of the shield wire are connected to the FG or GND terminal, the circuit will be closed between the shield wire and the ground. As a result, current will run through the shield wire and this may cause noise.)
Never fail to ground FG and GND terminals.

Terminator (Terminal resistor)

Do not connect terminator with the communication line because each JCM-33A has built-in pull-up and pull-down resistors instead of a terminator.
IF-300-C5 (sold separately) is available as a communication converter.

3. Setup of the JCM-33A

- It is necessary to set the instrument number individually to the JCM-33A when communicating by connecting plural units in serial communication (option C5).
Select a communication speed of the JCM-33A in accordance with that of the host computer.
- For the instrument number setting and communication speed, refer to the instruction manual for JCM-33A.

4. Communication procedure

Communication between the host computer (hereafter Master) and the JCM-33A (hereafter Slave) is started by transmitting the command from the master and terminated by receiving the response from the slave.

(Fig.4-1)

- Response with data

When the master sends the reading command, the slave responds with the corresponding setting value or current status

- Acknowledgement

When the master sends the setting command, the slave responds by sending the acknowledgement after the processing is terminated.

- Negative acknowledgement When the master sends a non-existent command or value out of the setting range, the slave returns a negative acknowledgement as a response.

- No response

The slave will not respond to the master when global address is set, or when there is a communication error (framing error or checksum error), or when LRC or CRC discrepancy is detected.

Communication timing of the RS-485 (option C5)
 Slave side

When the slave starts transmission to RS-485 communication line, the slave is arranged so as to provide an idle status (mark status) transmission period of 1 or more characters before sending the response to ensure the synchronization on the receiving side.
The slave is arranged so as to disconnect the transmitter from the communication line within a 1 character transmission period after sending the response.

Master side (Notice on programming)

Set the program so that the master can disconnect the transmitter from the communication line within a 1 character transmission period after sending the command in preparation for reception of the response from the slave.
To avoid the collision of transmissions between the master and the slave, send the next command after carefully checking that the master received the response.

Note:

When the master communicates with the slave through the line converter (IF-300-C5), it is not required to manage the transmission timing described above, because the converter automatically sets the transmission timing interpreting the protocol.

5. Shinko protocol

5.1 Transmission mode

Shinko protocol is composed of ASCII codes. Hexadecimal (0 to 9, A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8-bit binary data in command is transmitted as ASCII characters.
Data format: Start bit (1), Data bit (7), Parity (Even), Stop bit (1), Error detection (Checksum)

5.2 Command configuration

All commands are composed of ASCII. The data (setting value, decimal number) is represented by hexadecimal figures, and ASCII code is used. Negative numbers are represented by 2 's complement.
(1) Setting command

Header $(02 \mathrm{H})$	Address	Sub address $(20 \mathrm{H})$	Command type $(50 \mathrm{H})$	Data item	Data	Checksum	Delimitter $(03 \mathrm{H})$
1	1	1	1	4	4	2	1

Number of characters
(2) Reading command

(3) Response with data

Header $(06 \mathrm{H})$	Address	Sub address $(20 \mathrm{H})$	Command type $(20 \mathrm{H})$	Data item	Data	Checksum	Delimitter $(03 \mathrm{H})$
1	1	1	4	4	2	$1<$ Number of	
N characters							

(Fig. 5.2-3)
(4) Acknowledgement

Header $(06 \mathrm{H})$	Address	Checksum	Delimitter $(03 \mathrm{H})$
1	1	2	1

Number of characters
(5) Negative acknowledgement

Header $(15 \mathrm{H})$	Address	Error code	Checksum	Delimiter $(03 \mathrm{H})$	
1	1				

Number of characters
Header : Control code to represent the beginning of the command or the response. ASCII codes are used.
Setting command, Reading command : 02H fixed Response with data, Acknowledgement: 06 H fixed
Negative acknowledgement : 15H fixed
Address : Numbers by which the master discerns each slave. Instrument number 0 to 94 (00H to 5EH) and Global address 95 (5FH) The numbers (20 H to 7 FH) are used by giving 20 H of bias. 95 (7FH) is called Global address, which is used when the same command is sent to all the slaves connected. However, a response is not returned.
Sub address : $(20 \mathrm{H})$ fixed
Command type : Code to discern Setting command (50H) and Reading command (20H)
Data item : Data classification of the command object
Composed of hexadecimal 4 digits (Refer to the Communication command table)

Data : The contents of data (setting value) differ depending on the setting command Composed of hexadecimal 4 digits (Refer to the Communication command table)
Checksum : 2-character data to detect communication errors
Delimiter : Control code to represent the end of command (03H) fixed
Error code : Represents an error type. Composed of hexadecimal 1 digit.
1 (31H)-----Non-existent command
2 (32H)-----Not used
3 (33H)-----Setting value outside the setting range
4 (34H)-----Status unable to set (e.g. AT is performing)
$5(35 \mathrm{H})----$--During setting mode by keypad operation

5.3 Checksum calculation

Checksum is used to detect receiving errors in the command or data.
Set the program for the master side as well to calculate the checksum of the response data from the slaves so that the communication errors can be checked.
The ASCII code (hexadecimal) corresponding to the characters which range from the address to that before the checksum is converted to binary notation, and the total value is calculated. The lower 2-digits of the total value are converted to 2's complements and then to hexadecimal figures, that is, ASCII code for the checksum.

Checksum calculation example

Main setting value (SV1): $600^{\circ} \mathrm{C}$ (0258 H)
Address (instrument number): $0(20 \mathrm{H})$

- 1's complement: Make each bit of binary 0 and 1 reverse.
- 2's complement: Add 1 to 1's complement.

- It is possible to set the setting value by setting command of the communication function even if the setting value is locked.
- Although the options are not applied, setting the items for the options is possible by the setting command. However, they will not function.
- The memory can store up to $1,000,000$ (one million) entries. If the number of setting times exceeds the limit, it cannot memorize the data. So frequent transmission via communication is not recommended.
- When connecting plural slaves, the address (instrument number) must not be duplicated.
- When sending a command by Global address [95 (7FH)], the same command is sent to all the connected slaves. However, the response is not returned.
- The instrument number and communication speed of the slave cannot be set by communication.

Setting command

- The settable range is the same as that of the keypad operation.

Refer to the Communication command table of this manual regarding the communication command.

- All commands are composed of ASCII.
- The data (setting value, decimal) is converted to hexadecimal figures, and ASCII is used. Negative numbers are represented by 2's complement. When the data (setting value) has a decimal point, a whole number without a decimal point is used.

Reading command

- All commands are composed of ASCII.
- The data (setting value, decimal) is converted to hexadecimal figures, and ASCII is used. Negative numbers are represented by 2's complement. When the data (setting value) has a decimal point, the response is returned as a whole number without a decimal point.

6. Modbus protocol

6.1 Transmission mode

There are 2 transmission modes (ASCII and RTU) in Modbus protocol.

6.2 ASCII mode

Hexadecimal (0 to 9 , A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8 -bit binary data in the command is transmitted as ASCII characters.

Data format	Start bit	$: 1$ bit
	Data bit	$: 7$ bits
	Parity	$:$ Even/No/Odd (Selectable)
	Stop bit $: 1$ bit/2 bits (Selectable)	
	Error detection: LRC (Longitudinal Redundancy Check)	
	Data interval $: 1$ second or less	

(1) Message configuration

ASCII mode message is configured to start by [: (colon)(3AH)] and end by [CR (carriage return) (0DH) + LF (Line feed)(0AH)]. (See Fig. 6.2-1)

Header $(:)$	Slave address	Function code	Data	Error check LRC	Delimiter (CR)	Delimiter (LF)

(Fig. 6.2-1)
(2) Slave address

Slave address is an individual instrument number on the slave side and is set within the range 00 H to 5 FH (0 to 95).
The master identifies slaves by the slave address of the requested message.
The slave informs the master which slave is responding to the master by placing its own address in the response message.
(Slave address 00 H , broadcast address can identify all the slaves. However slaves do not respond.)
(3) Function code

The function code is the command code for the slave to undertake the following action types (Table 6.2-1).
(Table 6.2-1)

Function code	Contents
$03(03 \mathrm{H})$	Reading the setting value and information from slaves
$06(06 \mathrm{H})$	Setting to slaves

Function code is used to discern whether the response is normal (acknowledgement) or if any error (negative acknowledgement) has occurred when the slave returns the response message to the master. When acknowledgement is returned, the slave simply returns the original function code.
When negative acknowledgement is returned, the MSB of the original function code is set as 1
for the response.
(For example, when the master sends a request message setting 10 H to function code by mistake, slave returns 90 H by setting the MSB to 1 , because the former is an illegal function.)
For negative acknowledgement, abnormal code (Table 6.2-2) below is set to the data of response message and returned to the master in order to inform it that what kind of error has occurred.
(Table 6.2-2)

Abnormal code	Contents
$1(01 \mathrm{H})$	Illegal function (Non-existent function)
$2(02 \mathrm{H})$	Illegal data address (Non-existent data address)
$3(03 \mathrm{H})$	Illegal data value (Value out of the setting range)
$17(11 \mathrm{H})$	Illegal setting (Unsettable status)
$18(12 \mathrm{H})$	Illegal setting (During setting mode by key operation, etc)

(4) Data

Data differs depending on the function code.
A request message from the master side is composed of data item, number of data and setting data. A response message from the slave side is composed of number of bytes, data and abnormal code in negative acknowledgement. Effective range of data is -32768 to 32767 (8000 H to 7FFFH).
(5) Error check of ASCII mode

After calculating LRC (Longitudinal Redundancy Check) from the slave address to the end of data, the calculated 8-bit data is converted to two ASCII characters and are appended to the end of the message.

How LRC is calculated

(1) Create a message in RTU mode.
(2) Add all the values from the slave address to the end of data. This is assumed as X.
(3) Make a complement for X (bit reverse). This is assumed as X .
(4) Add a value of 1 to X. This is assumed as X.
(5) Set X as an LRC to the end of the message.
(6) Convert the whole message to ASCII characters.
(6) Message example of ASClI mode
(1) Reading (Address 1, SV)

- A request message from the master

Header $(3 \mathrm{AH})$	Slave address $(30 \mathrm{H} 31 \mathrm{H})$	Function code $(30 \mathrm{H} 33 \mathrm{H})$	Data item $(30 \mathrm{H} 30 \mathrm{H} 30 \mathrm{H} 31 \mathrm{H})$	Number of data $(30 \mathrm{H} 30 \mathrm{H} 30 \mathrm{H} 31 \mathrm{H})$	Error check LRC $(46 \mathrm{H} 41 \mathrm{H})$	Delimiter $(0 \mathrm{DH} 0 \mathrm{AH})$		
1	2	2	(Fig. 6.2-2)	4	2	2		Number of
:---:								
N characters								

The number of data indicates the data item to be read, and it is fixed as $(30 \mathrm{H} 30 \mathrm{H} 30 \mathrm{H} 31 \mathrm{H})$.

- A response message from the slave in normal status (When $\mathrm{SV}=100^{\circ} \mathrm{C}$)

Header $(3 A H)$	Slave address $(30 \mathrm{H} 31 \mathrm{H})$	Function code $(30 \mathrm{H} 33 \mathrm{H})$	Number of response bytes $(30 \mathrm{H} 32 \mathrm{H})$	Data $(30 \mathrm{H} 30 \mathrm{H} 36 \mathrm{H} 34 \mathrm{H})$	Error check LRC $(39 \mathrm{H} 36 \mathrm{H})$	Delimiter $(0 \mathrm{OH} 0 A H)$
1	2	2	2	4	2	2

(Fig.6.2-3)
The number of response bytes indicates the number of bytes of the data which has been read, and it is fixed as $(30 \mathrm{H} 32 \mathrm{H})$.

- A response message from the slave in abnormal status (When data item is mistaken)

Header $(3 \mathrm{AH})$	Slave address $(30 \mathrm{H} 31 \mathrm{H})$	Function code $(38 \mathrm{H} 33 \mathrm{H})$	Abnormal code $(30 \mathrm{H} 32 \mathrm{H})$	Error check LRC $(37 \mathrm{H} 41 \mathrm{H})$	Delimiter $(0 \mathrm{DH} 0 \mathrm{AH})$
2	2	2	2	2 Number of	

(Fig. 6.2-4)
The function code MSB is set to 1 for the response message in abnormal status (83 H).
If an abnormal code (02 H : Non-existent data address) is returned, the error can be determined by reading this code.
(2) Setting (Address $\mathbf{1 , S V}=100^{\circ} \mathrm{C}$)

- A request message from the master

| Header
 $(3 A H)$ | Slave
 address
 $(30 \mathrm{H} 31 \mathrm{H})$ | Function
 code
 $(30 \mathrm{H} 36 \mathrm{H})$ | Data item
 $(30 \mathrm{H} 30 \mathrm{H} 30 \mathrm{H} 31 \mathrm{H})$ | Data
 $(30 \mathrm{H} 30 \mathrm{H} 36 \mathrm{H} 34 \mathrm{H})$ | Error check
 LRC
 $(39 \mathrm{H} 34 \mathrm{H})$ | Delimiter
 $(0 \mathrm{DH} 0 \mathrm{AH})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Number of |
| :---: |
| 1 |

(Fig. 6.2-5)

- A response message from the slave in normal status

Header $(3 A H)$	Slave address $(30 \mathrm{H} 31 \mathrm{H})$	Function code $(30 \mathrm{H} 36 \mathrm{H})$	Data item $(30 \mathrm{H} 30 \mathrm{H} 30 \mathrm{H} 31 \mathrm{H})$	Data $(30 \mathrm{H} 30 \mathrm{H} 36 \mathrm{H} 34 \mathrm{H})$	Error check LRC $(39 \mathrm{H} 34 \mathrm{H})$	Delimiter $(0 \mathrm{DH} 0 \mathrm{AH})$
1	2	2	4	4	2	2

(Fig. 6.2-6)

- A response message from the slave in abnormal status (When a value out of the setting range is set)

| Header
 $(3 A H)$ | Slave
 address
 $(30 \mathrm{H} 31 \mathrm{H})$ | Function
 code
 $(38 \mathrm{H} 36 \mathrm{H})$ | Abnormal
 code
 $(30 \mathrm{H} 33 \mathrm{H})$ | Error check
 LRC
 $(37 \mathrm{H} 36 \mathrm{H})$ | Delimiter
 $(0 \mathrm{OH} 0 \mathrm{AH})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | | Number of |
| :---: |
| 1 |

(Fig. 6.2-7)
The function code MSB is set to 1 for the response message in abnormal status (86 H). If an abnormal code (03 H : Value out of the setting range) is returned, the error can be determined by reading this code.

6.3 RTU mode

8-bit binary data in command is transmitted as it is.
Data format Start bit $: 1$ bit
Data bit : 8 bits

Parity : Even/No/Odd (Selectable)
Stop bit $\quad: 1 \mathrm{bit} / 2$ bits (Selectable)
Error detection: CRC-16 (Cyclic Redundancy Check)
Data interval : 3.5 characters transmission time or less
(1) Message configuration

RTU mode is configured to start after idle time is processed for more than 3.5 characters transmission and end after idle time is processed for more than 3.5 characters transmission. (See Fig. 6.3-1)

| 3.5 idle |
| :---: | :---: | :---: | :---: | :---: |
| characters | | Slave |
| :---: |
| address |\quad| Function |
| :---: |
| code |\quad Data | Error check |
| :---: |
| CRC | | 3.5 idle |
| :---: |
| characters |

(Fig. 6.3-1)

(2) Slave address

Slave address is an individual instrument number on the slave side and is set within the range 00 H to 5 FH (0 to 95).
The master identifies slaves by the slave address of the requested message.
The slave informs the master which slave is responding to the master by placing its own address in the response message.
[Slave address 00 H (broadcast address) can identify all the slaves. However slaves do not respond.]
(3) Function code

The function code is the command code for the slave to undertake the following action types (Table 6.3-1).
(Table 6.3-1)

Function code	Contents
$03(03 \mathrm{H})$	Reading the setting value and information from slaves
$06(06 \mathrm{H})$	Setting to slaves

Function code is used to discern whether the response is normal (acknowledgement) or if any error (negative acknowledgement) has occurred when the slave returns the response message to the master.
When acknowledgement is returned, the slave simply returns the original function code.
When negative acknowledgement is returned, the MSB of the original function code is set as 1
for the response.
(For example, when the master sends a request message setting 10 H to function code by mistake, slave returns 90 H by setting the MSB to 1 , because the former is an illegal function.)
For negative acknowledgement, abnormal code (Table 6.3-2) below is set to the data of response message and returned to the master in order to inform it that what kind of error has occurred.
(Table 6.3-2)

Abnormal code	
$1(01 \mathrm{H})$	Illegal function (Non-existent function)
$2(02 \mathrm{H})$	Illegal data address (Non-existent data address)
$3(03 \mathrm{H})$	Illegal data value (Value out of the setting range)
$17(11 \mathrm{H})$	Illegal setting (Unsettable status)
$18(12 \mathrm{H})$	Illegal setting (During setting mode by keypad operation, etc)

(4) Data

Data differs depending on the function code.
A request message from the master side is composed of data item, number of data and setting data.
A response message from the slave side is composed of number of bytes, data and abnormal code in negative acknowledgement. Effective range of data is -32768 to 32767 (8000 H to 7FFFH).
(5) Error check of RTU mode

After calculating CRC-16 (Cyclic Redundancy Check) from the slave address to the end of data, the calculated 16 -bit data is appended to the end of message in sequence from low order to high order.

How CRC is calculated

In the CRC system, the information is divided by the polynomial. The remainder is added to the end of the information and transmitted. The generation of polynomial is as follows.
(Generation of polynomial: $\mathrm{X}^{16}+\mathrm{X}^{15}+\mathrm{X}^{2}+1$)
(1) Initialize the CRC-16 data (assumed as X) (FFFFH).
(2) Calculate exclusive OR (XOR) with the 1 st data and X. This is assumed as X.
(3) Shift X one bit to the right. This is assumed as X.
(4) When a carry is generated as a result of the shift, XOR is calculated by X of (3) and the fixed value $(\mathrm{A} 001 \mathrm{H})$. This is assumed as X .
If a carry is not generated, go to step (5)
(5) Repeat steps (3) and (4) until shifting 8 times.
(6) XOR is calculated with the next data and X . This is assumed as X .
(7) Repeat steps (3) to (5)
(8) Repeat steps (3) to (5) up to the last data.
(9) Set X as CRC-16 to the end of message in sequence from low order to high order.
(6) Message example of RTU mode
(1) Reading (Address 1, SV)

- Request message from the master

3.5 idle characters	Slave address (01H)	$\begin{gathered} \hline \text { Function } \\ \text { code } \\ (03 \mathrm{H}) \\ \hline \end{gathered}$	Data item $(0001 \mathrm{H})$	$\begin{aligned} & \text { Number of } \\ & \text { data } \\ & (0001 \mathrm{H}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Error check } \\ \text { CRC } \\ \text { (D5CAH) } \\ \hline \end{gathered}$	3.5 idle characters
	1	1	2	2	2	

(Fig. 6.3-2)
The number of data indicates the data item to be read, and it is fixed as $(0001 \mathrm{H})$.

- Response message from the slave in normal status (When SV $=100^{\circ} \mathrm{C}$)

3.5 idle characters	Slave address (01H)	$\begin{gathered} \hline \text { Function } \\ \text { code } \\ (03 \mathrm{H}) \end{gathered}$	Number of response bytes (02H)	$\begin{gathered} \text { Data } \\ (0064 \mathrm{H}) \end{gathered}$	Error check CRC (B9AFH)	3.5 idle characters
	1	1	1	2	2	characters

(Fig. 6.3-3)
The number of response byte indicates number of bytes of the data which has been read, and it is fixed as (02H).

- Response message from the slave in abnormal status (When data item is mistaken)

3.5 idle characters	Slave address (01H)	Function code (83H)	Abnormal code (02H)	$\begin{gathered} \hline \text { Error check } \\ \text { CRC } \\ \text { (C0F1H) } \\ \hline \end{gathered}$	3.5 idle characters
	1	1	1	24	Number of characters

(Fig. 6.3-4)
The function code MSB is set to 1 for the response message in abnormal status $(83 \mathrm{H})$.
If an abnormal code (02 H : Non-existent data address) is returned, the error can be determined by reading this code.
(2) Setting (Address $\mathbf{1 , S V}=100^{\circ} \mathrm{C}$)

- Request message from the master

3.5 idle characters	Slave address (01H)	$\begin{gathered} \hline \text { Function } \\ \text { code } \\ (06 \mathrm{H}) \\ \hline \end{gathered}$	Data item (0001H)	$\begin{gathered} \text { Data } \\ (0064 \mathrm{H}) \end{gathered}$	$\begin{gathered} \text { Error check } \\ \text { CRC } \\ \text { (D9E1H) } \\ \hline \end{gathered}$	3.5 idle characters
	1	1	2	2	2	characters

(Fig. 6.3-5)

- Response message from the slave in normal status

3.5 idle characters	Slave address (01H)	$\begin{gathered} \hline \text { Function } \\ \text { code } \\ (06 \mathrm{H}) \\ \hline \end{gathered}$	Data item (0001H)	$\begin{gathered} \text { Data } \\ (0064 \mathrm{H}) \end{gathered}$	$\begin{gathered} \text { Error check } \\ \text { CRC } \\ \text { (D9E1H) } \\ \hline \end{gathered}$	3.5 idle characters
	1	1	2	2	2	Number of characters

(Fig. 6.3-6)

- Response message from the slave in abnormal status (When a value out of the setting range is set)

3.5 idle characters	Slave address (01H)	$\begin{aligned} & \hline \text { Function } \\ & \text { code } \\ & (86 \mathrm{H}) \end{aligned}$	Abnormal code (03H)	$\begin{gathered} \hline \text { Error check } \\ \text { CRC } \\ (0261 \mathrm{H}) \end{gathered}$	3.5 idle characters
	1	1	1	24	characters

(Fig. 6.3-7)
The function code MSB is set to 1 for the response message in abnormal status (86 H). If an abnormal code (03 H : Value out of the setting range) is returned, the error can be determined by reading this code.

7. Communication command table

When the data (setting value) has a decimal point, remove the decimal point and represent it as a whole number, then express it in hexadecimal figures.

$\begin{gathered} \text { Shinko } \\ \text { command } \\ \text { type } \end{gathered}$	Modbus function code	Data item	Data
20H/50H	03H/06H	0001H: SV1	Setting value
20H/50H	03H/06H	0002H: Not used	
20H/50H	03H/06H	0003H: AT setting	0000H: Cancel 0001H: Perform
20H/50H	03H/06H	0004H: OUT1 proportional band setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0005H: OUT2 proportional band setting	Setting value
20H/50H	03H/06H	0006H: Integral time setting	Setting value
20H/50H	03H/06H	0007H: Derivative time setting	Setting value
20H/50H	03H/06H	0008H: OUT1 proportional cycle setting	Setting value
20H/50H	03H/06H	0009H: OUT2 proportional cycle setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	000AH: Not used	
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	000BH: A1 setting	Setting value
20H/50H	03H/06H	000CH: A2 setting	Setting value
20H/50H	03H/06H	000DH: Not used	
20H/50H	03H/06H	000EH: Not used	
20H/50H	03H/06H	000FH: HB (Heater burnout alarm) setting	Setting value
20H/50H	03H/06H	0010H: LA (Loop break alarm) time setting	Setting value
20H/50H	03H/06H	0011H: LA (Loop break alarm) span setting	Setting value
20H/50H	03H/06H	0012H: Setting value lock selection (*1)	0000H: Unlock $0001 \mathrm{H}:$ Lock 1 0002H: Lock 2 $0003 \mathrm{H}:$ Lock 3
20H/50H	03H/06H	0013H: SV high limit setting	Setting value
20H/50H	03H/06H	0014H: SV low limit setting	Setting value
20H/50H	03H/06H	0015H: Sensor correction value setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0016H: Overlap/Dead band setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0017H: Not used	
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0018H: Scaling high limit setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0019H: Scaling low limit setting	Setting value
20H/50H	03H/06H	001AH: Decimal point place selection	0000H: XXXX (No decimal point) $0001 \mathrm{H}: ~ \mathrm{XXX} . \mathrm{X}$ (1 digit after decimal point) 0002H: XX.XX (2 digits after decimal point) 0003H: X.XXX (3 digits after decimal point)
20H/50H	03H/06H	001BH: PV filter time constant setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	001CH: OUT1 high limit setting	Setting value
20H/50H	03H/06H	001DH: OUT1 low limit setting	Setting value
20H/50H	03H/06H	001EH: OUT1 ON/OFF action hysteresis setting	Setting value
20H/50H	03H/06H	001FH: OUT2 action mode selection	0000H: Air cooling 0001H: Oil cooling 0002H: Water cooling
20H/50H	03H/06H	0020H: OUT2 high limit setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0021H: OUT2 low limit setting	Setting value
20H/50H	03H/06H	0022H: OUT2 ON/OFF action hysteresis setting	Setting value
20H/50H	03H/06H	$0023 \mathrm{H}: \mathrm{A} 1$ action selection (*2) $0024 \mathrm{H}: \mathrm{A} 2$ action selection (*2)	0000 H : No alarm action 0001H: High limit alarm 0002H: Low limit alarm 0003H: High/Low limits alarm 0004H: High/Low limit range alarm 0005H: Process high alarm 0006H: Process low alarm 0007H: High limit alarm with standby 0008H: Low limit alarm with standby 0009H: High/Low limits alarm with standby

20H/50H	03H/06H	0025H: A1 hysteresis setting	Setting value
20H/50H	03H/06H	0026H: A2 hysteresis setting	Setting value
20H/50H	03H/06H	0027H: Not used	
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0028H: Not used	
20H/50H	03H/06H	0029H: A1 action delayed timer setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	002AH: A2 action delayed timer setting	Setting value
20H/50H	03H/06H	002BH: Not used	
-	-	:	
20H/50H	03H/06H	0036H: Not used	
20H/50H	03H/06H	0037H: OUT/OFF selection	0000H: OUT 0001H: OFF
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0038H: Auto/Manual control selection	0000H: Automatic control 0001H: Manual control
20H/50H	20H/50H	0039H: Manual control manipulated variable setting	Setting value
20H/50H	03H/06H	003AH: Not used	
!	:	!	
20H/50H	03H/06H	003FH: Not used	
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0040H: A1 action Energized/ Deenergized selection	0000H: Energized 0001H: Deenergized
20H/50H	03H/06H	0041H: A2 action Energized/ Deenergized selection	0000H: Energized 0001H: Deenergized
20H/50H	03H/06H	0042H: Not used	
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0043H: Not used	
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0044H: Input type selection	0000H: K [-200 to $\left.1370^{\circ} \mathrm{C}\right]$
			0001H: K [-199.9 to $\left.400.0^{\circ} \mathrm{C}\right]$
			0002H: J [-200 to $\left.1000^{\circ} \mathrm{C}\right]$
			0003H: R [0 to $\left.1760^{\circ} \mathrm{C}\right]$
			0004H: S [0 to $\left.1760^{\circ} \mathrm{C}\right]$
			0005H: B [0 to $\left.1820^{\circ} \mathrm{C}\right]$
			0006H: E [-200 to $\left.800^{\circ} \mathrm{C}\right]$
			0007H: T [-199.9 to 400.0 ${ }^{\circ} \mathrm{C}$]
			0008H: N [-200 to $\left.1300^{\circ} \mathrm{C}\right]$
			0009H: PL-II [0 to 1390 ${ }^{\circ} \mathrm{C}$]
			000AH: C (W/Re5-26) [0 to 2315 ${ }^{\circ} \mathrm{C}$]
			000BH: Pt100 [-199.9 to 850.0$\left.{ }^{\circ} \mathrm{C}\right]$
			000CH: JPt100 [-199.9 to 500.0 ${ }^{\circ} \mathrm{C}$]
			000DH: Pt100 [-200 to $\left.850^{\circ} \mathrm{C}\right]$
			000EH: JPt100 [-200 to 500 $\left.{ }^{\circ} \mathrm{C}\right]$
			000FH: K [-320 to 2500 ${ }^{\circ}$]
			0010H: K [-199.9 to $\left.750.0{ }^{\circ} \mathrm{F}\right]$
			0011H: J [-320 to 1800 ${ }^{\circ}$]
			0012H: R [0 to 3200\% ${ }^{\circ}$
			0013H: S [0 to 3200 ${ }^{\circ}$]
			0014H: B [0 to 3300 ${ }^{\circ}$]
			0015H: E [-320 to 1500 ${ }^{\circ}$]
			0016H: T [-199.9 to 750.0\%]
			0017H: N [-320 to 2300 ${ }^{\circ}$]
			0018H: PL-II [0 to 2500 ${ }^{\circ}$]
			0019H: C (W/Re5-26) [0 to 4200\%]
			001AH: Pt100 [-199.9 to 999.9F]
			001BH: JPt100 [-199.9 to 900.0\%]
			001CH: Pt100 [-300 to 1500 ${ }^{\circ}$]
			001DH: JPt100 [-300 to 900 ${ }^{\circ}$]
			001EH: 4 to 20mA DC[-1999 to 9999]
			001FH: 0 to 20mA DC[-1999 to 9999]
			0020H: 0 to 1V DC [-1999 to 9999]
			0021H: 0 to 5V DC [-1999 to 9999]
			0022H: 1 to 5V DC [-1999 to 9999]
			0023H: 0 to 10V DC [-1999 to 9999]
20H/50H	03H/06H	0045H: Direct/Reverse action selection	0000 H : Heating (Reverse action) 0001 H : Cooling (Direct action)
20H/50H	03H/06H	0046H: Not used	

20H/50H	03H/06H	0047H: AT bias setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	0048H: ARW (anti-reset windup) setting	Setting value
$20 \mathrm{H} / 50 \mathrm{H}$	03H/06H	006FH: Key Lock selection	0000H: Key enabled 0001H: Key Lock
50 H	06H	0070H: Key operation change flag clearing	0000H: No action 0001 H : All clearing
20 H	03H	0080H: PV reading	Present PV (input value)
20 H	03H	0081H: OUT1 MV reading	Setting value
20 H	03H	0082H: OUT2 MV reading	Setting value
20 H	03H	0083H: Not used	
20 H	03H	0084H: Not used	
20 H	03H	0085H: OUT status reading	
20H	03H	0086H: Not used	
20 H	03H	0087H: Not used	
20 H	03H	00AOH: Not used	
20 H	03H	$00 \mathrm{~A} 1 \mathrm{H}:$ Instrument information reading	

(*1) When Lock 3 is designated, the set data is not saved in the memory.
This is why the setting value reverts to the one before Lock 3 when power is turned OFF.
(*2) When alarm action type is changed, the alarm setting value reverts to the default value and alarm output status is also initialized.

Note

When data setting is changed by front keypad operation, the data that is related to the changed item is also changed automatically as shown in Example 1 below.
However, when the data setting is changed by communication function, the related data does not change as shown in Example 2 below. (Only the changed data is altered.)
(Example 1) SV high limit: $1370^{\circ} \mathrm{C}, ~ S V: 1000^{\circ} \mathrm{C}$ When SV high limit is changed to $800^{\circ} \mathrm{C}$ by the front keypad operation, both SV high limit and SV are changed to $800^{\circ} \mathrm{C}$.
(Example 2) SV high limit: $1370^{\circ} \mathrm{C}$, SV: $1000^{\circ} \mathrm{C}$ When SV high limit is changed to $800^{\circ} \mathrm{C}$ by communication function, SV high limit is changed to $800^{\circ} \mathrm{C}$, however, SV is maintained at the same temperature $1000^{\circ} \mathrm{C}$.

8. Specifications

Cable length
: Max. 1200m
Cable resistance: Within 50Ω (Terminator: None, or 120Ω or greater for one side)
: Based on EIA RS-485
Communication line
Number of connectable units: Max. 31 units

Communication system Communication speed Code form
Error detection
Error correction
Data format
: Half-duplex communication start-stop synchronous
: 9600bps (2400, 4800, 9600, 19200bps) Selectable by keypad operation
: ASCII, binary
: Parity check, Checksum (LRC), CRC
: Command request repeat system
Start bit: 1
Data bit:7, 8
Parity : Even, Odd, No
Stop bit : 1, 2

9. Troubleshooting

If any malfunctions occur, refer to the following items after checking the power supply to the master and the slave.

- Problem: If it is unable to communicate

Check the following
The connection or wiring of communication is not secure.
Burnout or imperfect contact on the communication cable and the connector.
Communication speed of the slave does not coincide with that of the master.
The data bit, parity and stop bit of the master do not accord with those of the slave.
The instrument number (address) of the slave does not coincide with that of the command.
The instrument numbers (addresses) are duplicated in multiple slaves.
When communicating without using Shinko communication converter (IF-300-C5), make sure that the program is appropriate for the transmission timing.

- Problem: Though it is able to communicate, the response is 'NAK'.

Check the following
Check whether a non-existent command code has been sent or not.
The setting command data goes outside the setting range of the slave.
The controller cannot be set when such as AT is performing.
The operation mode is under the front keypad operation setting mode.
If you have any inquiries, please consult our agency or the shop where you purchased the unit.

SHINKO TECHNOS CO.,LTD. OVERSEAS DIVISION

Reg. Office : 1-2-48, Ina, Minoo, Osaka, Japan
Mail Address: P.O.Box 17, Minoo, Osaka, Japan
URL :http://www.shinko-technos.co.jp
E-mail : overseas@shinko-technos.co.jp
Tel: 81-72-721-2781
Fax: 81-72-724-1760

